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Abstract— Robots are increasingly deployed in spaces shared
with humans, including home settings and industrial environ-
ments. In these environments, the interaction between hu-
mans and robots (HRI) is crucial for safety, legibility, and
efficiency. A key factor in HRI is trust, which modulates
the acceptance of the system. Anthropomorphism has been
shown to modulate trust development in a robot, but robots
in industrial environments are usually not anthropomorphic.
We designed a simple interaction in an industrial environment
in which an anthropomorphic mock driver (ARMoD) robot
simulates driving an autonomous guided vehicle (AGV). The
task consisted of a human crossing paths with the AGV, with or
without the ARMoD mounted on the top, in a narrow corridor.
The human and the system needed to negotiate trajectories
when crossing paths, meaning that the human had to attend to
the trajectory of the robot to avoid a collision with it. There
was a significant increment in the reported trust scores in the
condition where the ARMoD was present, showing that the
presence of an anthropomorphic robot is enough to modulate
the trust, even in limited interactions as the one we present
here.

I. INTRODUCTION

Non-humanoid robots are usually equipped with various
non-verbal channels to communicate their intent to humans,
such as light signals, floor projections, or auditory signals [1].
When navigating in a shared environment, such signals help
coordinating their motion with people, to avoid collision,
increase legibility and task efficiency. As for the tasks
that require cooperation and active coordination, like the
handover task, more complex communication channels might
be required, such as verbal communication with additional
gestures and gazes. Humanoid robots with anthropomorphic
features, e.g., arms, legs, and facial features, are often used in
this context to improve interaction with human users [2], [3],
and their anthropomorphism leads to an increase of users’
trust in the interaction [4], [5].

As the usage and complexity of industrial robots increase,
they take on unfamiliar shapes and thus, complicate the
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Fig. 1. Setup of the (a) Autonomous Guided Vehicle (AGV) with the
(b) Anthropomorphic Robotic Mock Driver (ARMoD), placed on top of
the vehicle. The AGV can potentially communicate intent through gestures,
gazes and speech of the Driver.

interaction and establishment of trust in shared environments
with humans. Robot-related factors were shown to be the
most relevant for the development of trust in these inter-
actions [6]. Among these factors, the design of the robot is
particularly important to get the human interaction partners to
trust the robot appropriately [7]. Anthropomorphic features
may aid the trust, but they are not often present in industrial
robots. As the complexity of the new systems increase,
the perception of these systems as collaborators rather than
machines have been deemed as positive [8]. For example, the
addition of a pair of sunglasses to a industrial robotic hand
and gripper, along with a set of breathing-like movements
and gaze behavior, improved metrics from participants such
as the perceived sociability and likeability of the system [9].
However, in their study, the authors did not find differences in
trust. One possible reason for this is that they included a scale
that was not originally designed for industrial collaborations
[10]. Another study showed that trust does not seem to
be affected as a result of anthropomorphism in industrial
settings [11]. In this case the authors used a validated scale to
trust in industrial collaboration, developed by Charalambous
et al. [12]. Nevertheless, the study employed a limited form
of anthropomorphism in which a face appeared on a screen
attached to a robotic arm and gripper. In contrast to previous
research, our study does not include a tactile interaction. Our
research explores a new perceived modality of navigation for
a non-humanoid robot that can potentially improve trust on
the system by using a humanoid robot, NAO, in industrial
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settings.
We propose a combined approach of a humanoid robot

with an Autonomous Guided Vehicle (AGV), used for in-
stance in the intralogistic settings1. We refer to this com-
bination as a “robot-on-robot platform” (see Figure 1). By
combining an AGV with sophisticated social robots with
anthropomorphic features, successfully used in trust-related
user studies [13], we expect to achieve an increase in the
trust of human users. To the best of our knowledge, this is
the first approach to study the interaction of an navigating
AGV equipped with an an Anthropomorphic Mock Driver
(ARMoD) with participants in a shared environment. To this
extent, we chose an NAO robot with a human-likeliness
score of 46% [14], as it is the subject of recent user based
studies [15], it is small enough to be mounted on our AGV,
and posses a software development kits to develop custom
modules. We designed an encounter in a narrow corridor
to measure the impact of the ARMoD on trust reported by
participants. In our scenario, as the participant approached
the robot, it looked at the participant’s head and traced it
until the vehicle passed the participant. We used the scale
developed by Charalambous et al. [12] to measure trust in
industrial collaborations. With the data we obtained from 33
participants, we found that the users reported higher trust in
the interaction with the ARMoD than in the AGV alone.

II. EXPERIMENT DESIGN

A. Materials

The aim of this study was to explore the impact that an
Anthropomorphic Robotic Mock Driver (ARMoD) seated on
top of an AGV has on users’ trust during a basic human-robot
interaction consisting of walking and avoiding the moving
platform. The AGV we used fits the definition of “mobile
platform” after ISO8373:2021. On top of the platform a seat
was mounted to hold the NAO robot in place, which enabled
a fixed and repeatable placement (see Figure 1). We used
the same AGV as in our previous studies of intent com-
munication [16], a retrofitted Linde CitiTruck with a SICK
S300 scanner at the back, to ensure the safety of humans
approaching from behind. The AGV is equipped with sensor
modules to localize itself within the laboratory and a onboard
RGB-D camera for short-range person detection (≈2 meters).

B. Task

We designed a scenario where participants encountered a
moving robot platform in a hallway with the aim to study
trust as a result of the appearance of the platform, either
as it is (AGV), or with a anthropomorphic robot on the top
(ARMoD). In the experiment we chose a setup that reflects a
potential encounter between humans and robotic workers in
an industrial environment. The chosen width of the hallway
was 2 meters, as it matches the regulations for corridors
proposed in the DIN-18040-1 and the EN-ISO-24341 (former
EN 426) standards for meeting areas. The participants and
the platform started 14 meters apart, a feasible length for

1http://iliad-project.eu

Fig. 2. Participant encountering the robot-on-robot platform in a 2-meter
wide and 15-meter long corridor. The participant has to decide for a side
to pass the platform. The robot takes one of three different trajectories (1)
Curve to the right side, (2) Straight ahead, (3) Curve to the left side.

TABLE I
DEMOGRAPHIC INFORMATION FROM THE PARTICIPANTS

Group N Age (SD) Women Other gender Left-handed

ARMoD 19 29.7 (9.8) 13 1 1
AGV 14 27.3 (4) 5 0 1

the definition as a corridor encounter. During this sequence,
the participants saw the platform as it approached them, and
they were simply instructed to walk by its side towards
the opposite direction. In the ARMoD condition, if the
participants got close enough for the short-range person
detection (≈2 meters), the robot simulated awareness with
the head motion to trace the participants’ movement until
they crossed paths. This encounter was repeated three times
with the platform randomly taking one of the different routes:
(1) platform moved in a curve to the right side of the hallway,
(2) platform moved to the left side of the hallway and (3)
platform headed straight. The platform moved at a constant
speed of 0.6 m/s.

C. Procedure, sample, and measurements

After the task, participants filled an adapted version of a
scale to measure trust in industrial human-robot collaboration
developed by Charalambous et al. [12]. In this version,
the items referring to the grip of the robot (C, E, G, J)
were removed, as no gripper was used in our scenario. We
also used a 7-point Likert scale ranging from 1 “strongly
disagree” to 7 “strongly agree”. Additionally, we obtained
some demographic information (see Table I). The age of
participants ranged from 18 to 56 years (M=28.7, SD=7.88)
and all of them were fluent in English. Participants were re-
cruited at Örebro University and participation was voluntary.
All participants were informed about the task, consented to
participate, and were aware of the possibility to leave at any
time. We analyzed the trust scores of 33 participants divided
in two groups: one that walked by the ARMoD on top of the
AGV (n=19) and one that walked just by the AGV (n=14).

III. RESULTS

To ensure that the trust scale of Charalambous et al. [12]
was still reliable despite the removal of certain items, we
calculated the Cronbach’s α. The scale yielded a score of
0.76, beyond the acceptable level of 0.7 [17].

http://iliad-project.eu


Fig. 3. Violin plots and box plots of the trust scores for both condi-
tions. Means and corresponding error bars in red. Error bars show 95%
bootstrapped confidence intervals.

The trust scale is composed of three major components, the
robot’s motion and pickup speed (1), safe co-operation (2),
and robot and gripper reliability (3). Because the first and
last components involve the gripper and the pickup action,
which were not part of our experiment, we just used those
items within these that applied to the robot but not to the
gripper: one item for the first component (robot’s motion
and pickup speed, two items in the original scale), and one
item for the third component (robot and gripper reliability,
four items in the original scale). To calculate the final trust
score, we multiplied each of these item’s score by the number
of items belonging to that component in the original scale,
two and four respectively, and added these to the sum of the
scores of the second component (safe co-operation).

Once the trust score was obtained for each participant, we
proceeded with the analysis, performed in R [18]. Because
the trust scores in both groups were not normally distributed
(see violin plots in Fig. 3), we opted for a Robust variation of
the Welch’s t-test [19] to compare the reported trust between
the two groups. The yuenbt function, based on bootstrapping,
from the WRS2 [20], [21] package was used for the analysis.
We kept the default bootstrapping value of 599 samples
of 20% trimmed means. The ξ̂ measure was used as a
explanatory measurement of robust effect size, as suggested
by Wilcox and Tian [22]. This measure was calculated using
the yuen.effect.ci function of the WRS2 package. Values of
ξ̂= 0.1, 0.3, and 0.5 correspond to small, medium and large
effect sizes respectively.

On average, participants reported higher levels of trust
for the ARMoD condition (M = 59.73, SE = 2.22),
than for the AGV alone (M = 52.5, SE = 2.78). This
difference was marginally significant t = −1.68, p =
.051, 95%CI[−17, 0.09]; nevertheless, this difference did
represent a medium–large effect, ξ̂ = 0.41.

IV. DISCUSSION

In this study we explored how trust from users varied
as a result of the anthropomorphic features of a robot
in an industrial environment. Hancock et al. [6] outlined

the importance of robot-related factors for the development
of trust in a human-robot interaction. In [7], the authors
state that improving trust in a robot already starts with
designing it appropriately. Instead of designing a new robot
from scratch to increase the trust of users in industrial
settings, we modified the design of an “Autonomous Guided
Vehicle” (AGV) by adding an “Anthropomorphic Robotic
Mock Driver” (ARMoD). AGVs such as the forklift in
our experiment are frequently deployed in shared industrial
environments alongside human co-workers. We used the
popular anthropomorphic social robot “NAO” [13], [15] as
the ARMoD.

The results of our study showed that the use of the
ARMoD increased the reported trust in the interaction of
participants with the platform. The simple addition of a
robot on the top of the AGV, alongside basic gaze behavior,
was enough to increase users’ trust of the system within an
industrial setting. Our results are in line with recent research
emphasizing the role of anthropomorphism in trust [4], [5].
Contrary to other research set in industrial environments
[9], [11], our results showed that perceived trust varies as
a result of anthropomorphism in basic interactions such as
the avoidance of a moving robot. Although not complex, this
kind of interaction is probably one that will be common in
busy industrial settings. The difference in the results between
this study and prior art is probably explained by the different
nature of the interactions, as previous studies involved tasks
such as handovers and precise object manipulations in which
the success of the interaction may have not been taken for
granted by participants.

Our suggested solution increased trust through the use of
anthropomorphic features and gaze behavior. However, there
are other features that can lead to set an appropriate level of
trust during the interactions with humans. For example, we
previously explored a different method of communicating in-
tent for the AGV using “Spatial Augmented Reality (SAR)”
by projecting patterns on the floor in front of the robot [16].
This form of communication is however limited by the light-
ing conditions of the environment and can only be deployed
to communicate navigational intent. Using the ARMoD we
can overcome the disadvantages of the previous studied SAR
to design future experiments, e.g., independence from the
lighting conditions or two dimensional floor patterns. The
ARMoD can interact with participants in a proactive manner
through the usage of non-verbal communication, as well as
gazes and gestures to communicate any kind of intent. Future
research should explore how these social features beyond
plain anthropomorphism might impact the trust that users
have on the robots in industrial environments.

This research comes with two limitations. First, although
high levels of trust are desirable, we just focused on the
robot appearance component that modulates it. Appropriate
functioning and the minimization of failures by the system
can have a greater impact on the perceived trust. Moreover,
manipulating trust purely by appearance while ignoring other
aspects could lead to over-trust, which can be dangerous
and is not desirable in potentially threatening situations,



such as the platform not breaking when headed towards
a person. Second, we designed a basic encounter that did
not involve a tactile interaction or manipulation, contrary to
previous research with industrial robots. Nevertheless, we
believe that the scenario of a corridor encounter with a robot
will likely become an everyday common one. This is because
this situation may occur in a wide variety of industries, and
other kind of shared environments and with different types
of workers, even with those not directly involved in close
collaborative works with the robot.

V. CONCLUSION AND FUTURE WORK

This work presented a study on a novel interaction
method for an autonomous guided vehicle (AGV) through
an anthropomorphic robotic mock driver (ARMoD) with
33 participants. We conducted an experiment, a hallway
encounter, where participants passed the AGV with the AR-
MoD mounted on top in a narrow corridor in one condition
and encountered only the AGV, but without the ARMoD in
another. We found that through adding the ARMoD to the
AGV, participants reported a higher trust on the interaction.
Our results suggest that using anthropomorphic robot in
industrial settings can help to adjust the levels of trust that
users place on what otherwise would be a navigation vehicle.
Under the assumption of proper functioning, higher trust on
industrial robots can lead to higher levels of acceptability
reported by the users.
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